Embeddings

agent Temporal Evolution

118
Total Embedding Vectors
7
Documents Embedded
0
Period-Aware
1
Methods Used
Document Embeddings 7 documents
local_embedding all-MiniLM-L6-v2
384
Dimensions
2
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
Pipeline
local_embedding all-MiniLM-L6-v2
384
Dimensions
12
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
local_embedding all-MiniLM-L6-v2
384
Dimensions
38
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
local_embedding all-MiniLM-L6-v2
384
Dimensions
4
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
local_embedding all-MiniLM-L6-v2
384
Dimensions
27
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
local_embedding all-MiniLM-L6-v2
384
Dimensions
5
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
Pipeline
local_embedding all-MiniLM-L6-v2
384
Dimensions
30
Chunks
384 / 4096 max dimensions
2025-12-16 15:06
About Embeddings
What are Embeddings?

Embeddings are dense vector representations of text that capture semantic meaning. Similar texts have similar embeddings, enabling semantic search and comparison.

Period-Aware Models
  • Pre-1850: all-mpnet-base-v2 (768 dims)
  • 1850-1950: all-mpnet-base-v2 (768 dims)
  • 1950-2000: all-MiniLM-L6-v2 (384 dims)
  • 2000+: all-roberta-large-v1 (1024 dims)
Usage

Period-aware embeddings select models optimized for historical eras, enabling accurate semantic comparison across time periods.